# 96kHz 、24bit 立体声音频 ADC

#### 概述

GC1808PWR 是一款高性能、低成本立体声音频模数转换器。其集成了64倍过采样率Δ-Σ调制器、数字梳状滤波器、数字高通滤波器。 GC1808 支持主、从机和两种串行音频数据格式。 GC1808 支持掉电和时钟检测低功耗模式。

GC1808PWR 封装形式采用TSSOP14, 温度支持-40° 到 +85° C。

#### 特点

- 24bitΔ-Σ立体声ADC
- +5.0 V 模拟电源 (VA)
- +3.3 V数字电源 (VDD)
- 单端电压输入: 3Vp-p
- 高性能

THD+N: -93dB (典型值)

SNR: 99dB (典型值)

动态范围: 99dB (典型值)

● 过采样抽取滤波器

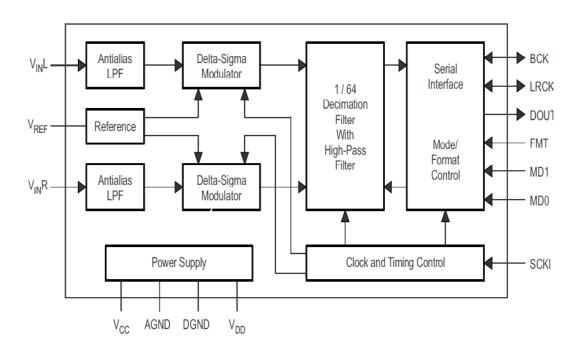
过采样频率: x64

通带纹波: ±0.05 dB

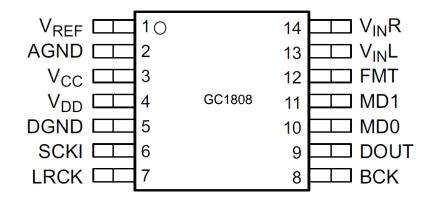
片上高通滤波器: 0.91 Hz (48 kHz)

● PCM 音频接口

可选主机和从机模式


数据格式: 24-Bit I2S, 24-Bit 左对齐

- 集成模拟低通抗混叠滤波器
- 采样率: 8 kHz-96 kHz
- 系统时钟: 256 fs, 384 fs, 512 fs
- 精度: 24bit
- 封装: TSSOP14


#### **Applications**

- 家庭影院和电视
- 语音控制设备
- 蓝牙®扬声器
- 麦克风阵列处理器

## 内部框图



## 1. PIN脚描述



| PIN脚 | 顺序 | PIN脚描述                          |
|------|----|---------------------------------|
| VREF | 1  | 参考电源去耦合管脚                       |
| AGND | 2  | 模拟地                             |
| Vcc  | 3  | 模拟电源                            |
| VDD  | 4  | 数字电源                            |
| DGND | 5  | 数字地                             |
| SCKI | 6  | 系统时钟输入 256 fs, 384 fs or 512 fs |
| LRCK | 7  | 音频数据锁存使能                        |
| BCK  | 8  | 音频数据时钟                          |
| DOUT | 9  | 数字音频数据输出                        |
| MD0  | 10 | 音频接口模式选择 0                      |
| MD1  | 11 | 音频接口模式选择 1                      |
| FMT  | 12 | 音频格式选择                          |
| VINL | 13 | 模拟左通道输入                         |
| VINR | 14 | 模拟右通道输入                         |

# 2. 性能和参数

## 极限工作条件

(AGND, DGND = 0 V, 所有电压参考地电位

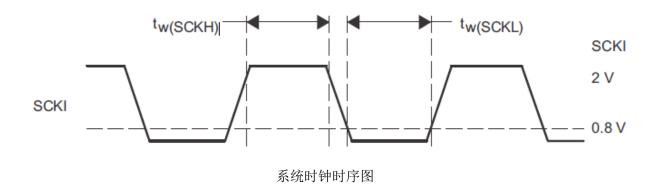
| 参数              |                     | 最小值  | 典型值   | 最大值                 | 单位 |
|-----------------|---------------------|------|-------|---------------------|----|
| 电源电压            | Vcc                 | -0.3 | 5     | 6.5                 | V  |
| 电源电压            | $V_{DD}$            | -0.3 | 3.3   | 4                   | V  |
| 地               | AGND DGND           |      |       | ±0.1                | V  |
| <b>粉字於</b> ) 由压 | LRCK, BCK, DOUT     | -0.3 |       | (VDD + 0.3 V) < 4   | V  |
| 数字输入电压          | SCKL, MD0, MD1, FMT | -0.3 |       | 6.5                 | V  |
| 模拟输入            | VINL, VINR, VREF    | -0.3 |       | (VCC + 0.3 V) < 6.5 |    |
| 工作温度:           |                     |      |       |                     |    |
| 商 用 级           | TA                  | -10  | -     | +70                 | °C |
| 车载级             |                     | -40  | -     | +85                 |    |
| ESD (HBM)       |                     |      | ±4000 |                     | V  |

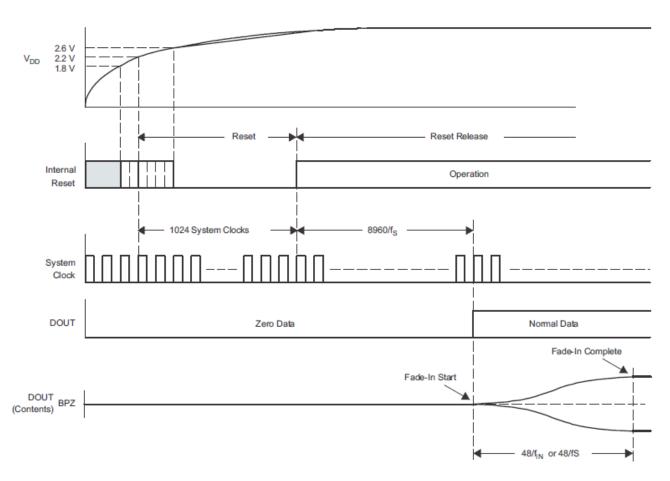
# 推荐工作条件

|     |           |           | 最小  | 典型  | 最大  | 单位   |
|-----|-----------|-----------|-----|-----|-----|------|
| VCC | 模技        | 以电源       | 4.5 | 5   | 5.5 | V    |
| VDD | 数等        | 字电源       | 2.7 | 3.3 | 3.6 | V    |
|     | 模拟满幅输入    | VCC = 5 V |     |     | 3   | Vp-p |
| VIH | 数字逻辑输入高电平 |           | 2   |     | VDD | VDC  |
| VIL | 数字逻辑输入低电平 |           | 0   |     | 0.8 | VDC  |

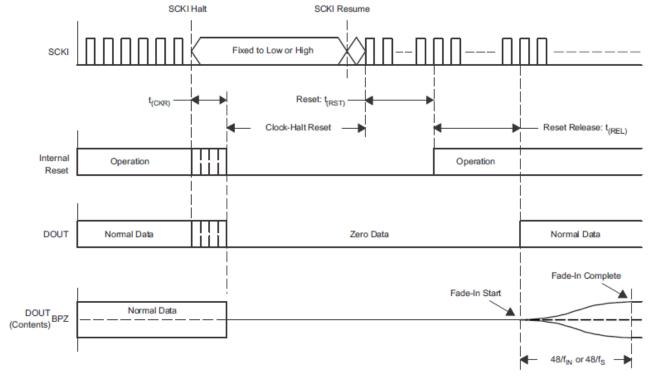
| VIH | 模拟输入高电平    |      | 2     | 5.5    | VDC |
|-----|------------|------|-------|--------|-----|
|     | 2007/11/25 |      | _     | - 10   | 0   |
| VIL | 模拟输入低电平    |      | 0     | 0.8    | VDC |
|     | 系统时钟       |      | 2.048 | 49.152 | MHz |
|     | 数字         | 采样时钟 | 8     | 96     | kHz |
|     | 数字输出负载电容   |      |       | 20     | pF  |

## 电学参数

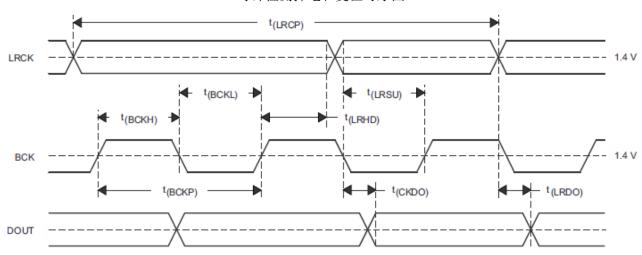

测试条件为  $T_A$  = 25°C,  $V_{CC}$  = 5 V,  $V_{DD}$  = 3.3 V, 主机模式,  $f_S$  = 48 kHz, 系统时钟 = 512  $f_S$ , 24-bit data,


|     | A = 25°C, V <sub>CC</sub> = 5 V, V <sub>DD</sub> = 3.3 V, 王/<br>参数 | 测试条件        | 最小值    |              | 最大值      | 单位          |
|-----|--------------------------------------------------------------------|-------------|--------|--------------|----------|-------------|
|     | 精度                                                                 |             |        | 24           |          | Bits        |
|     | 数据格式                                                               |             |        |              |          |             |
|     | 音频数据接口格式                                                           |             | 123    | S,左对表        | <b>Ť</b> |             |
|     | 音频数据位数                                                             |             |        | 24           |          | Bits        |
|     | 音频数据格式                                                             |             | 首先是最   | b高有效位<br>制补码 | 立,二进     |             |
| fS  | 采样频率                                                               |             | 8      | 48           | 96       | kHz         |
|     |                                                                    | 256 fS      | 2. 048 | 12. 288      | 24. 576  |             |
|     | 系统时钟频率                                                             | 384 fS      | 3.072  | 18. 432      | 36. 864  | MHz         |
|     |                                                                    | 512 fS      | 4. 096 | 24. 576      | 49. 152  |             |
|     | <u> </u>                                                           | 输入逻辑        |        |              |          |             |
| VIH | 数字逻辑输入高电平                                                          |             | 2      |              | VDD      | VDC         |
| VIL | 数字逻辑输入低电平                                                          |             | 0      |              | 0.8      | VDC         |
| VIH | 模拟逻辑输入高电平                                                          |             | 2      |              | 5. 5     | VDC         |
| VIL | 模拟逻辑输入低电平                                                          |             | 0      |              | 0.8      | VDC         |
| IIH | 数字高电平输入电流                                                          | NIN = NDD   |        |              | ±10      | μД          |
| IIL | 数字低电平输入电流                                                          | V = 0 V     |        |              | ±10      | μA          |
| IIH | 模拟高电平输入电流                                                          | VIN = VDD   |        | 65           | 100      | μA          |
| IIL | 模拟字低电平输入电流                                                         | VIN = 0 V   |        |              | ±10      | μA          |
|     |                                                                    | 输出逻辑        |        |              |          |             |
| VOH | 逻辑输出高电平                                                            | IOUT= - 4mA | 2.8    |              |          | VDC         |
| VOL | 逻辑输出低电平                                                            | IOUT = 4 mA |        |              | 0. 5     | VDC         |
|     |                                                                    | 直流精度        | -      |              |          |             |
|     | 通道间增益失配                                                            |             |        | ±1           | ±3       | % of<br>FSR |

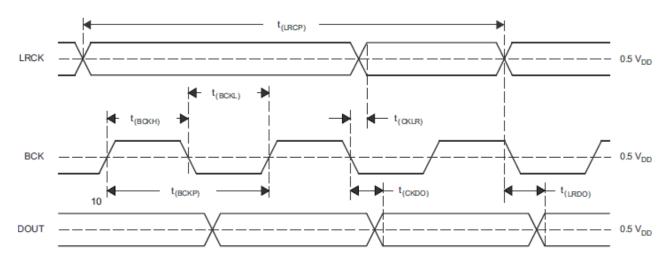
|          | 增益误差        |                               |              | ±3                    | ±6           | % of<br>FSR |
|----------|-------------|-------------------------------|--------------|-----------------------|--------------|-------------|
|          |             | 动态性能                          |              | _                     |              |             |
|          |             | VIN = -0.5  dB,  fs = 48  kHz |              | - 93                  | - 87         |             |
| THD+N    | 总谐波失真+噪声    | VIN=-0.5 dB, fs = 96 kHz      |              | - 87                  |              |             |
| THE T    |             | VIN = -60  dB,  fs = 48  kHz  |              | - 37                  |              | dB          |
|          |             | VIN=-60 dB, fs = 96 kHz       |              | - 39                  |              |             |
|          | 动态范围        | fs = 48 kHz, A-weighted       | 95           | 99                    |              | dBVDC       |
|          | 2月251年1月    | fs= 96 kHz, A-weighted        |              | 101                   |              | abybc       |
| 0 /27    | Pare II.    | fs = 48 kHz, A-weighted       | 95           | 99                    |              | ī.          |
| S/N      | 信噪比         | Fs = 96 kHz, A-weighted       |              | 101                   |              | dB          |
|          | )7 )        | fs = 48 kHz                   | 93           | 97                    |              |             |
|          | 通道隔离度       | fs= 96 kHz                    |              | 91                    |              | dB          |
|          |             | 模拟输入                          |              | <u>I</u>              |              |             |
|          | 输入电压        |                               |              | 0.6 VCC               |              | Vp-p        |
|          | 中心电压 (VREF) |                               |              | 0.5 VCC               |              | V           |
|          | 输入阻抗        |                               |              | 60                    |              | kΩ          |
|          | 抗混跌滤波频率     | - 3 dB                        |              | 1. 3                  |              | MHz         |
|          |             | 数字滤波器特性                       |              |                       |              |             |
|          | 通带          |                               |              |                       | 0. 454<br>fS | Hz          |
|          | 阻带          |                               | 0. 583<br>fS |                       |              | Hz          |
|          | 通带纹波        |                               |              |                       | $\pm 0.05$   | dB          |
|          | 阻带抑制        |                               | - 65         |                       |              | dB          |
|          | 延时          |                               |              | 17.4/fs               |              |             |
|          | HPF 频率响应    | - 3 dB                        |              | 0.019 fs<br>/<br>1000 |              |             |
| <u> </u> |             | 功耗                            | •            |                       |              |             |
| ICC      | 模拟电源电流      | fs = 48kHz, 96 kHz            |              | 8.6                   | 11           | mA          |
|          |             | 掉电                            |              | 1                     |              | μА          |
|          |             | fs = 48 kHz                   |              | 5. 9                  | 8            | mA          |
| IDD      | 数字电源电流      | fs= 96 kHz                    |              | 10. 2                 |              | mA          |
|          |             | 掉电                            |              | 150                   |              | μA          |


时序参数

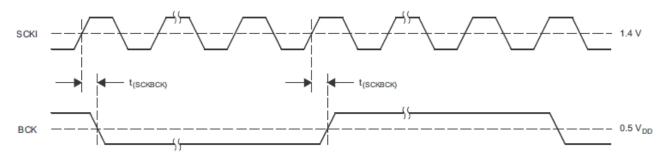
|           |                              | 最小值            | 典型值            | 最大值          | 单位 |
|-----------|------------------------------|----------------|----------------|--------------|----|
|           | 系统时钟时序                       |                |                |              |    |
| tw(SCKH)  | 系统时钟高电平时间                    | 8              |                |              | ns |
| tw(SCKL)  | 系统时钟低电平时间                    | 8              |                |              | ns |
|           | 系统实在占空比                      | 40%            |                | 60%          |    |
| •         | 时钟停止掉电复位时序                   |                | I              |              |    |
| t(CKR)    | SCKI 停止到复位时间                 | 4              |                |              | μs |
| t(RST)    | SCKI 开始到复位释放时间               |                |                | 1024<br>SCKI | μs |
| t(REL)    | 复位释放到数据输出时间                  |                |                | 8960 / fS    | μs |
|           | 音频数据接口时序 (从机模式: LRCK 和 BCK 个 | 作为输入)          |                | •            |    |
| t(BCKP)   | BCK 周期                       | 1 / (64 fS)    |                |              | ns |
| t(BCKH)   | BCK 高电平宽度                    | 1.5 × t(SCKI)  |                |              | ns |
| t(BCKL)   | BCK 低电平宽度                    | 1.5 × t(SCKI)  |                |              | ns |
| t(LRSU)   | RSU) LRCK 到 BCK 上升沿建立时间      |                |                |              | ns |
| t(LRHD)   | LRCK 到 BCK 上升沿保持时间           |                |                |              | ns |
| t(LRCP)   | LRCH 周期                      | 10             |                |              | μs |
| t(CKDO)   | BCK 下降沿到 DOUT 延时             | -10            |                | 40           | ns |
| t(LRDO)   | LRCK 边沿到 DOUT 延时             | -10            |                | 40           | ns |
| tr        | 上升沿                          |                |                | 20           | ns |
| tf        | 下降沿                          |                |                | 20           | ns |
|           | 音频数据接口时序(主机模式: LRCK 和 BCK    | 作为输出)          |                |              |    |
| t(BCKP)   | BCK 周期                       | 150            | 1 / (64<br>fS) | 2000         | ns |
| t(BCKH)   | BCK 高电平宽度                    | 65             |                | 1200         | ns |
| t(BCKL)   | BCK 低电平宽度                    | 65             |                | 1200         | ns |
| t(CKLR)   | BCK 下降沿到 LRCK 有效             | -10            |                | 20           | ns |
| t(LRCP)   | LRCK 周期                      | 10             | 1 / fS         | 125          | ns |
| t(CKDO)   | BCK 下降沿到 DOUT 延时             | -10            |                | 20           | ns |
| t(LRDO)   | LRCK 边沿到 DOUT 延时             | -10            |                | 20           | ns |
| tr        | 上升时间                         |                |                | 20           | ns |
| tf        | 下降时间                         |                |                | 20           | ns |
|           | 音频时钟接口时序(主机模式: BCK 作为转       | <u></u><br>俞出) |                |              |    |
| t(SCKBCK) | SCKI 上升沿到 BCK 边沿延时           | 5              |                | 30           | ns |







上电时序图

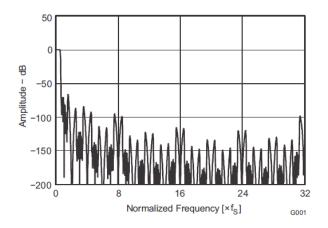


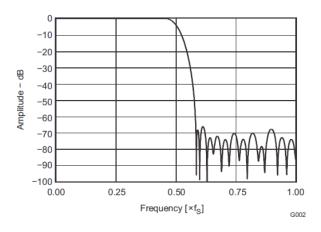

#### 时钟检测掉电和复位时序图



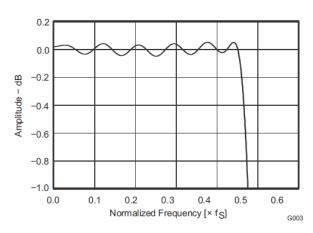
音频数据接口时序图(从机模式: LRCK和BCK做为输入)



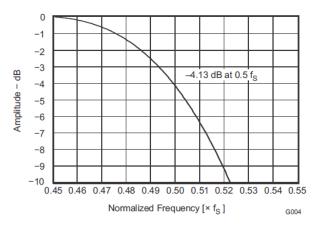

音频数据接口时序图(主机模式: LRCK和BCK做为输出)



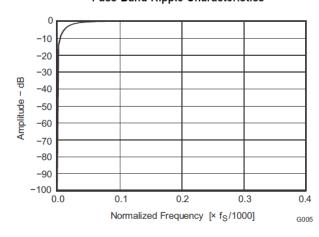

音频时钟接口时序图(主机模式: BCK做为输出)


### 3. 典型曲线图

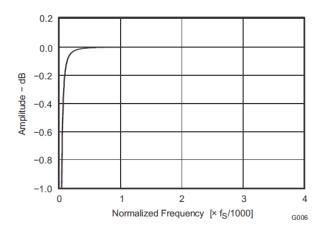
(条件是TA = 25°C, VCC=5 V, VDD=3.3 V, 主机模式, fs = 48 kHz, 系统时钟 = 512 fs, 24-bit数据)





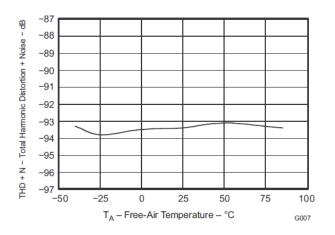


Decimation-Filter Frequency Response Overall Characteristics

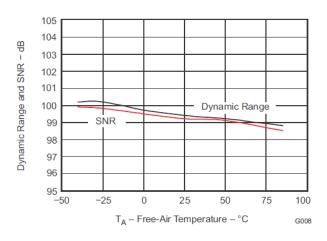


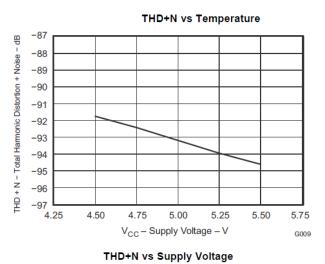

Decimation-Filter Frequency Response Stop-Band Attenuation Characteristics

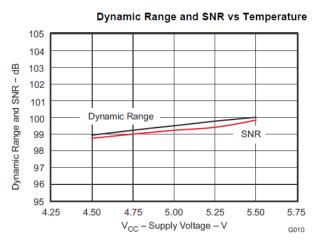


Decimation-Filter Frequency Response Pass-Band Ripple Characteristics

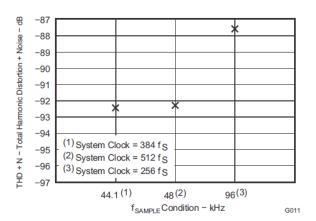


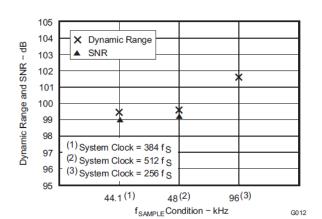


Decimation-Filter Frequency Response Transition-Band Characteristics





High-Pass Filter Frequency Response HPF Stop-Band Characteristics

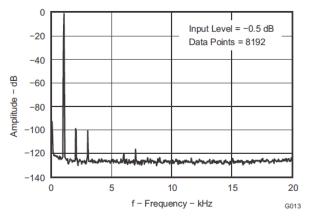
High-Pass Filter Frequency Response HPF Stop-Band Characteristics



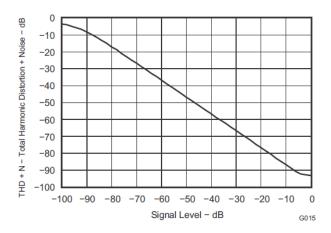









Dynamic Range and SNR vs Supply Voltage

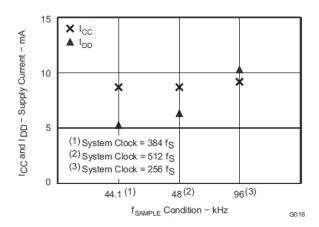





THD+N vs f<sub>SAMPLE</sub> Condition

Dynamic Range and SNR vs  $f_{\text{SAMPLE}}$  Condition




Output Spectrum (-0.5 dB, N = 8192)



Output Spectrum THD+N vs Signal Level



Output Spectrum (-60 dB, N = 8192)



Supply Current vs f<sub>SAMPLE</sub> Condition

#### 4. 详细描述

GC1808PW是一款高性能、低成本、单芯片立体声音频模数转换器,其采用单端模拟输入,里面集成了 64倍过采样的  $\Delta - \Sigma$  调制器、数字抽取滤波器、数字高通滤波器,支持主机和从机模式,可以检测系统时钟来掉电和复位芯片。

#### 4.1 硬件控制

可以通过外部数字IC的GPIO、上拉电阻、下拉电阻来控制引脚FMT,MDO和MD1的状态,从而控制芯片在I2S或左对齐数据接口格式之间切换

#### 4.2系统时钟

GC1808PWR支持256 fs、384 fs和512 fs作为系统时钟,其中fs为音频采样频率。系统时钟输入必须是SCKI (pin 6)。GC1808PWR 内部集成一个系统时钟检测电路,它可以自动感知系统时钟。在从机模式操作是在256 fs,384 fs,或512 fs。在主机模式下,通过串行控制端口MD1 (pin 11)和MD0 (pin 10)来控制系统时钟频率。内部电路自动检测系统时钟,生成128fs的频率和64fs的频率,做为数字滤波器和delta-sigma调制器使用。下表是采样频率和系统时钟频率对应关系:

| SAMPLING FREQUENCY (kHz) | SYSTEM CLOCK FREQUENCY (f <sub>SCLK</sub> ) (MHz) |                    |                    |  |  |
|--------------------------|---------------------------------------------------|--------------------|--------------------|--|--|
|                          | 256 f <sub>S</sub>                                | 384 f <sub>S</sub> | 512 f <sub>S</sub> |  |  |
| 8                        | 2.048                                             | 3.072              | 4.096              |  |  |
| 16                       | 4.096                                             | 6.144              | 8.192              |  |  |
| 32                       | 8.192                                             | 12.288             | 16.384             |  |  |
| 44.1                     | 11.2896                                           | 16.9344            | 22.5792            |  |  |
| 48                       | 12.288                                            | 18.432             | 24.576             |  |  |
| 64                       | 16.384                                            | 24.576             | 32.768             |  |  |
| 88.2                     | 22.5792                                           | 33.8688            | 45.1584            |  |  |
| 96                       | 24.576                                            | 36.864             | 49.152             |  |  |

### 4.3和数字音频系统同步

在从机模式下, LRCK (pin 7)须和系统时钟SCK(pin 6)I同步。GC1808PWR 不需要LRCK和SCKI之间的特定相位关系,但需要LRCK和SCKI的同步。

#### 4.4上电

GC1808PWR集成一个内部电源复位电路。电源(VDD)超过2.2 V(典型),初始化(复位)会自动发生。当VDD < 2.2 V(典型),1024系统时钟计数后,VDD > 2.2 V(典型),GC1808PWR处于复位状态,数字输出为零。在释放复位状态后,8960 /fs秒后数字输才有效。因为执行fade-in操作时,需要额外时间48/fin或48/fs来获得相应的数据。

### 4.5串行音频数据接口

GC1808PWR通过LRCK (pin 7)、BCK (pin 8)和DOUT (pin 9)连接音频系统。

#### 4.5.1接口模式

MD1 (pin 11)和MD0 (pin 10)选择主模式和从模式。下表显示了接口模式选择。上电之前,必须设置MD1和MD0。

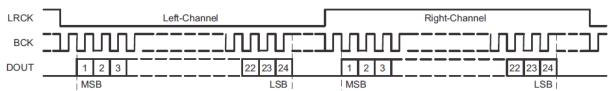
| MD1 (PIN 11) | MD0 (PIN 10) | INTERFACE MODE                                                                          |
|--------------|--------------|-----------------------------------------------------------------------------------------|
| Low          | Low          | Slave mode (256 f <sub>S</sub> , 384 f <sub>S</sub> , 512 f <sub>S</sub> autodetection) |
| Low          | High         | Master mode (512 f <sub>S</sub> )                                                       |
| High         | Low          | Master mode (384 f <sub>S</sub> )                                                       |
| High         | High         | Master mode (256 f <sub>S</sub> )                                                       |

在主机模式中,GC1808PWR 提供了 GC1808 和数字音频处理器或外部电路的串行音频数据通信的时序。 在从机模式下,GC1808PWR 接收来自外部控制器的数据。

#### 4.5.1.1主机模式

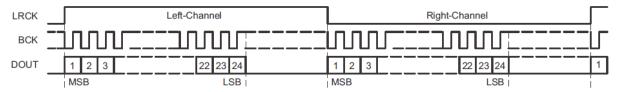
在主机模式,BCK和LRCK作为输出引脚,从GC1808 时钟电路中控制此两脚。BCK的频率为每帧64 BCK。

#### 4.5.1.2从机模式


在从机模式下,BCK和LRCK作为输入引脚。GC1808PWR 接收64-BCK/祯或48-BCK/祯的格式(仅适用于384-fs系统时钟)数据,而不是32-BCK/帧格式。

### 4.5.2数据格式

| FORMAT NO. | FMT (Pin 12) | FORMAT                   |
|------------|--------------|--------------------------|
| 0          | Low          | l <sup>2</sup> S, 24-bit |
| 1          | High         | Left-justified, 24-bit   |


Format 0: FMT = LOW

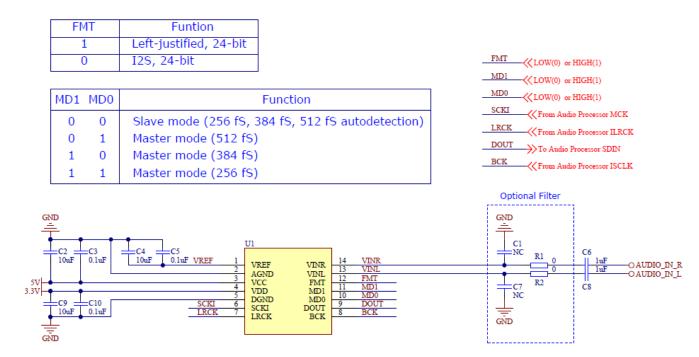




Format 1: FMT = HIGH

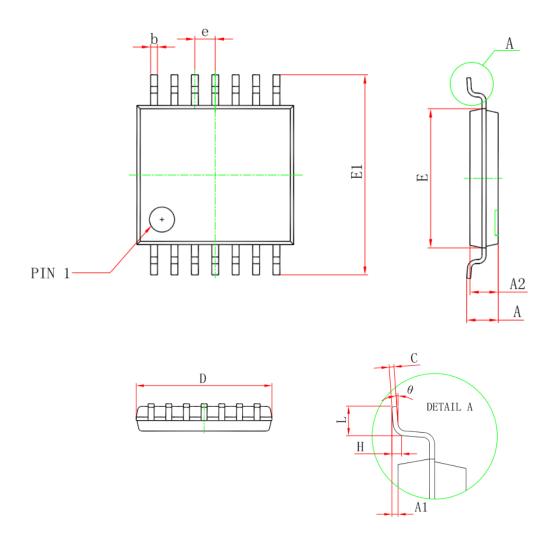
24-Bit, MSB-First, Left-Justified




#### 4.6掉电

GC1808PWR 当MCLK停止时间超过13us,则进入掉电模式,同时数字滤波器也同步复位。此复位操作和上

电复位相同。在掉电模式下,VCOM与VSS1电位相同。模拟初始化周期从掉电模式开始,在主机模式下,输出数据SDTO在4129个LRCK时钟周期有效,在从机模式下,输出数据SDTO在4132个LRCK时钟周期有效。


在初始化过程中,两个通道的ADC数字数据输出都为二进制补码"0"。ADC输出正常建立在初始化结束后(约群延时相同)。

#### 5. 典型应用图



- 1) C2, C3: 推荐并联的10uF和0.1uF电容作为VCC脚的电源滤波电容。
- 2) C9, C10: 推荐并联的10uF和0.1uF电容作为VDD脚的电源滤波电容。
- 3) C4, C5: 推荐并联的10uF和0.1uF电容作为VREF脚的滤波电容。
- 4) C6, C8: 推荐1uF的耦合电容,用于耦合外部音频信号和VINR、VINL管脚。C1、C7和R1、R2是可选的RC滤波器,可根据实际应用来选取合适的值。
- 5) FMT、MD1和MD0脚需要外接高电平或者低电平,FMT用来选择数据格式,MD1和MD0用来选择是从机模式 还是主机模式。
- 6) SCKI、LRCK、DOUT、BCK用来和音频处理器(例如AES编码器)的I2S接口连接。SCKI作为输入连接MCLK、LRCK作为输入和ILRCK连接,BCK作为输入和ISCLK连接、DOUT作为输出和SDIN连接。

# 6.封装尺寸



| Symbol     | Dimensions In | Millimeters | Dimension | s In Inches |
|------------|---------------|-------------|-----------|-------------|
| Symbol     | Min           | Max         | Min       | Max         |
| D          | 4. 900        | 5. 100      | 0. 193    | 0. 201      |
| E          | 4.300         | 4. 500      | 0.169     | 0.177       |
| b          | 0.190         | 0.300       | 0.007     | 0.012       |
| c          | 0.090         | 0. 200      | 0.004     | 0.008       |
| E1         | 6. 250        | 6. 550      | 0.246     | 0.258       |
| Α          |               | 1. 200      |           | 0.047       |
| A2         | 0.800         | 1.000       | 0.031     | 0.039       |
| <b>A</b> 1 | 0.050         | 0.150       | 0.002     | 0.006       |
| e          | 0.65 (BSC)    |             | 0.026     | (BSC)       |
| L          | 0.500         | 0.700       | 0.020     | 0.028       |
| Н          | 0.25(TYP)     |             | 0.01(     | TYP)        |
| θ          | 1°            | 7°          | 1°        | 7°          |